Learning Team Strategies with Multiple Policy-sharing Agents: a Soccer Case Study

نویسنده

  • Marco Wiering
چکیده

We use simulated soccer to study multiagent learning. Each team's players (agents) share action set and policy but may behave diierently due to position-dependent inputs. All agents making up a team are rewarded or punished collectively in case of goals. We conduct simulations with varying team sizes, and compare two learning algorithms: TD-Q learning with linear neural networks (TD-Q) and Probabilistic Incremental Program Evolution (PIPE). TD-Q is based on evaluation functions (EFs) mapping input/action pairs to expected reward, while PIPE searches policy space directly. PIPE uses adaptive \probabilistic prototype trees" to synthesize programs that calculate action probabilities from current inputs. Our results show that TD-Q encounters several diiculties in learning appropriate shared EFs. PIPE, however, does not depend on EFs and can nd good policies faster and more reliably. This suggests that in multiagent learning scenarios direct search through policy space can ooer advantages over EF-based approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordination Approach to Find Best Defense Decision with Multiple Possibilities among Robocup Soccer Simulation Team

In 2D Soccer Simulation league, agents will decide based on information and data in their model. Effective decisions need to have world model information without any noise and missing data; however, there are few solutions to omit noise in world model data; so we should find efficient ways to reduce the effect of noise when making decisions. In this article we evaluate some simple solutions whe...

متن کامل

Learning complementary multiagent behaviors: a case study

As machine learning is applied to increasingly complex tasks, it is likely that the diverse challenges encountered can only be addressed by combining the strengths of different learning algorithms. We examine this aspect of learning through a case study grounded in the robot soccer context. The task we consider is Keepaway, a popular benchmark for multiagent reinforcement learning from the simu...

متن کامل

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

Half Field Offense in RoboCup Soccer: A Multiagent Reinforcement Learning Case Study

We present half field offense, a novel subtask of RoboCup simulated soccer, and pose it as a problem for reinforcement learning. In this task, an offense team attempts to outplay a defense team in order to shoot goals. Half field offense extends keepaway [11], a simpler subtask of RoboCup soccer in which one team must try to keep possession of the ball within a small rectangular region, and awa...

متن کامل

A Scoring Policy for Simulated Soccer Agents Using Reinforcement Learning

The robotic soccer is one of the complex multi-agent systems in which agents play the role of soccer players. The characteristics of such systems are: real-time, noisy, collaborative and adversarial. Because of the inherent complexity of this type of systems, machine learning is used for training agents. Since the main purpose of a soccer game is to score goals, it is important for a robotic so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997